Organization of intracortical circuits in relation to direction preference maps in ferret visual cortex.
نویسندگان
چکیده
Neurons in the primary visual cortex are selective for the direction of movement of a visual stimulus. Like other stimulus features, direction preference is mapped on the cortical surface in a systematic manner. Intracortical synaptic circuits, in particular inhibitory connections, have been implicated in the emergence of direction selectivity. Whether intracortical inhibition specifically suppresses responses to the nonpreferred direction or has a nonspecific "thresholding" effect is still controversial. To address these questions we investigated the relationship between patterns of intracortical synaptic connections and direction domains in ferret primary visual cortex (area 17) using a combined in vivo-in vitro approach. Excitatory synaptic inputs were iso-direction-tuned. The majority of local inhibitory inputs were also iso-direction-tuned. However, approximately 40% of inhibitory connections originated in regions preferring the opposite direction. These findings indicate that specific inhibitory interactions between cortical regions of opposite direction preference may contribute to the emergence and sharpening of direction selectivity.
منابع مشابه
Maps in the brain: what can we learn from them?
In mammalian visual cortex, neurons are organized according to their functional properties into multiple maps such as retinotopic, ocular dominance, orientation preference, direction of motion, and others. What determines the organization of cortical maps? We argue that cortical maps reflect neuronal connectivity in intracortical circuits. Because connecting distant neurons requires costly wiri...
متن کاملDifferent inhibitory synaptic input patterns in excitatory and inhibitory layer 4 neurons of ferret visual cortex.
The synaptic mechanisms underlying the generation of orientation and direction selectivity in layer 4 of the primary visual cortex are still largely unclear. Previous in vivo work has shown that intra-cortical inhibition plays a major role in generating the properties of orientation and direction selectivity. Excitatory and inhibitory cortical neurons differ in their receptive field properties:...
متن کاملOrientation Preference Patterns in Mammalian Visual Cortex A Wire Length Minimization Approach
In the visual cortex of many mammals, orientation preference changes smoothly along the cortical surface, with the exception of singularities such as pinwheels and fractures. The reason for the existence of these singularities has remained elusive, suggesting that they are developmental artifacts. We show that singularities reduce the length of intracortical neuronal connections for some connec...
متن کاملOptically imaged maps of orientation preference in primary visual cortex of cats and ferrets.
Feature maps in the cerebral cortex constitute orderly representations of response features created within the cortex; an example is the mapping of orientation-selective neurons in visual cortex. We have compared the properties of orientation maps in area 17 of cats and ferrets, obtained by optical imaging of intrinsic signals. Orientation maps in both species contain a quasi-periodic distribut...
متن کاملUniversality in the evolution of orientation columns in the visual cortex.
The brain's visual cortex processes information concerning form, pattern, and motion within functional maps that reflect the layout of neuronal circuits. We analyzed functional maps of orientation preference in the ferret, tree shrew, and galago--three species separated since the basal radiation of placental mammals more than 65 million years ago--and found a common organizing principle. A symm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 24 شماره
صفحات -
تاریخ انتشار 1999